Convergent evolution of a reproductive trait through distinct developmental mechanisms in Drosophila.

نویسندگان

  • Delbert A Green
  • Cassandra G Extavour
چکیده

Convergent morphologies often arise due to similar selective pressures in independent lineages. It is poorly understood whether the same or different developmental genetic mechanisms underlie such convergence. Here we show that independent evolution of a reproductive trait, ovariole number, has resulted from changes in distinct developmental mechanisms, each of which may have a different underlying genetic basis in Drosophila. Ovariole number in Drosophila is species-specific, highly variable, and largely under genetic control. Convergent changes in Drosophila ovariole number have evolved independently within and between species. We previously showed that the number of a specific ovarian cell type, terminal filament (TF) cells, determines ovariole number. Here we examine TF cell development in different Drosophila lineages that independently evolved a significantly lower ovariole number than the D. melanogaster Oregon R strain. We show that in these Drosophila lineages, reduction in ovariole number occurs primarily through variations in one of two different developmental mechanisms: (1) reduced number of somatic gonad precursors (SGP cells) specified during embryogenesis; or (2) alterations of somatic gonad cell morphogenesis and differentiation in larval life. Mutations in the D. melanogaster Insulin Receptor (InR) alter SGP cell number but not ovarian morphogenesis, while targeted loss of function of bric-à-brac 2 (bab2) affects morphogenesis without changing SGP cell number. Thus, evolution can produce similar ovariole numbers through distinct developmental mechanisms, likely controlled by different genetic mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergent evolution of sexual dimorphism in skull shape using distinct developmental strategies.

Studies integrating evolutionary and developmental analyses of morphological variation are of growing interest to biologists as they promise to shed fresh light on the mechanisms of morphological diversification. Sexually dimorphic traits tend to be incredibly divergent across taxa. Such diversification must arise through evolutionary modifications to sex differences during development. Neverth...

متن کامل

Distinct developmental mechanisms underlie the evolutionary diversification of Drosophila sex combs.

Similar selective pressures can lead to independent origin of similar morphological structures in multiple evolutionary lineages. Developmental mechanisms underlying convergent evolution remain poorly understood. In this report, we show that similar sex comb morphology in closely related Drosophila species is produced by different cellular mechanisms. The sex comb is a recently evolved, male-sp...

متن کامل

Two developmentally temporal quantitative trait loci underlie convergent evolution of increased branchial bone length in sticklebacks.

In convergent evolution, similar phenotypes evolve repeatedly in independent populations, often reflecting adaptation to similar environments. Understanding whether convergent evolution proceeds via similar or different genetic and developmental mechanisms offers insight towards the repeatability and predictability of evolution. Oceanic populations of threespine stickleback fish, Gasterosteus a...

متن کامل

Geographic variation in diapause incidence, life-history traits, and climatic adaptation in Drosophila melanogaster.

In Drosophila melanogaster, exposure of females to low temperature and shortened photoperiod can induce the expression of reproductive quiescence or diapause. Diapause expression is highly variable within and among natural populations and has significant effects on life-history profiles, including patterns of longevity, fecundity, and stress resistance. We hypothesized that if diapause expressi...

متن کامل

Insulin signalling underlies both plasticity and divergence of a reproductive trait in Drosophila.

Phenotypic plasticity is the ability of a single genotype to yield distinct phenotypes in different environments. The molecular mechanisms linking phenotypic plasticity to the evolution of heritable diversification, however, are largely unknown. Here, we show that insulin/insulin-like growth factor signalling (IIS) underlies both phenotypic plasticity and evolutionary diversification of ovariol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental biology

دوره 372 1  شماره 

صفحات  -

تاریخ انتشار 2012